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A time series approach has been applied to the nuclear fission source distribution gener-
ated by Monte Carlo (MC) particle transport in order to calculate the non-fundamental
mode eigenvalues of the system. The novel aspect is the combination of the general tech-
nical principle of projection pursuit for multivariate data with the neutron multiplication
eigenvalue problem in the nuclear engineering discipline. Proof is thoroughly provided that
the stationary MC process is linear to first order approximation and that it transforms into
one-dimensional autoregressive processes of order one (AR(1)) via the automated choice of
projection vectors. The autocorrelation coefficient of the resulting AR(1) process corre-
sponds to the ratio of the desired mode eigenvalue to the fundamental mode eigenvalue.
All modern MC codes for nuclear criticality calculate the fundamental mode eigenvalue,
so the desired mode eigenvalue can be easily determined.

This time series approach was tested for a variety of problems including multi-dimen-
sional ones. Numerical results show that the time series approach has strong potential
for three dimensional whole reactor core. The eigenvalue ratio can be updated in an on-
the-fly manner without storing the nuclear fission source distributions at all previous iter-
ation cycles for the mean subtraction. Lastly, the effects of degenerate eigenvalues are
investigated and solutions are provided.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The conservative transport equation is a general partial differential equation that can describe transport phenomena such
as heat transfer, fluid dynamics, etc. In the nuclear engineering discipline, the transport equation is integro-differential and
used to model neutron economy, i.e, the balance of neutron population in the presence of nuclear reactions and leakage out
of the domain of interest [1]. In this context, it is termed the neutron transport equation, and solutions of the steady-state
neutron transport equation exist for specific gauging parameters called k-eigenvalues. Monte Carlo (MC) techniques exist to
compute the largest k-eigenvalue by simulating a sufficient number of realizations of the problem through iterating cycles of
particle tracking and population normalization. In this way, the eigenvalue is calculated within a statistical uncertainty. In
this article a novel method of calculating the k-eigenvalue separations with MC calculations is presented. It is termed the
Coarse Mesh Projection Method (CMPM).

The k-eigenvalues each correspond to a particular fundamental or non-fundamental mode eigenfunction. The fundamen-
tal mode eigenfunction is everywhere non-negative over the physical space of the problem, and in MC calculations it man-
ifests itself as the stationary nuclear fission source distribution. The non-fundamental mode eigenfunctions are those that
. All rights reserved.
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assume both positive and negative values, and in MC calculations they manifest themselves as fluctuating components. Cal-
culating the fundamental mode eigenvalue is considered routine using power iteration methods [2], but calculating the non-
fundamental mode eigenvalues is often quite difficult. Throughout this work we refer to the nuclear fission source distribu-
tion and the non-fundamental mode k-eigenvalues simply as source distribution and eigenvalues, respectively, for the sake
of repetition. The application of CMPM results in the computation of eigenvalue separation in the form of the ratio of the
(desired mode) eigenvalue to the fundamental mode k-eigenvalue. Since the fundamental mode k-eigenvalue is easily ob-
tained using MC techniques, the eigenvalue follows easily.

CMPM utilizes projection techniques to transform the problem into a one-dimensional autoregressive process, which
then allows the eigenvalue separation to be solved for using the standard time series technique with linear least square.
Determination of the projection vector is automated and assures that only information about the desired eigenmode is ex-
tracted. CMPM has two advantages over recent work [3] on the computation of eigenvalue ratio via time series analysis. First,
CMPM does not use non-linear least square iterations upon fitting and thus leads to the elimination of an initial guess of
fitting coefficients. Second, the capability of CMPM is not restricted to the computation of the eigenvalue ratio of the first
mode to the fundamental mode. In this article, the CMPM methodology is fully described, beginning from a general form
of the transport equation.

2. Monte Carlo (MC) transport

The neutron transport equation describes the evolution of neutron distribution in a system over time, given material
properties, geometry, and initial and boundary conditions. The equation is comprised of several terms that account for
the creation and removal of neutrons in the system. For nuclear reactors and their fuel storage and processing facilities, cre-
ation of neutrons is governed by nuclear fission, which has a chance to occur when neutrons are absorbed in fissionable iso-
topes. Removal of neutrons is predominantly governed by absorption in non-fissionable isotopes and leakage out of the
system. Until a neutron is either absorbed or leaked out, it simply scatters around within the system.

Due to the complexity of the transport equation, it is often written using a fission operator FW and a transport operator
TW with W standing for neutron flux. Mathematically, these operators are defined as [1]
FW ¼
Z Emax

0

Z
4p

mRf ~r; E
0� �
W ~r; ~X0; E0
� �

d2X0 dE0; ð1Þ

TW ¼ ~X � ~rW ~r; ~X; E
� �

þ Rt ~r; Eð ÞW ~r; ~X; E
� �

�
Z Emax

0

Z
4p

Rs ~r; ~X0; E
0 ! ~X; E

� �
W ~r; ~X0; E0
� �

d2X0dE0; ð2Þ
where v is the average number of neutrons generated per fission event, Rf is the macroscopic fission cross section, Rs is the
macroscopic differential scattering cross section, Rt is the macroscopic total cross section, E is energy, ~X is the unit vector in
direction of movement, and~r is spatial coordinate vector. The macroscopic cross sections represent the likelihood of a par-
ticular event per unit distance traveled. Using these operators and including the gauging parameter keff , the transport equa-
tion can be made time-independent:
TW ¼ 1
keff

vðEÞ
4p

FW: ð3Þ
In this equation, vðEÞ represents the energy spectrum of fission-born neutrons, the 4p indicates that the fission neutrons are
born isotropically in direction, and keff represents the fundamental mode eigenvalue termed the effective neutron multipli-
cation factor.

To obtain the eigenvalue equation of source distribution, the operator T in Eq. (3) is formally inverted and both sides of
the equation are operated on by F
FW ¼ 1
keff

FT�1 vðEÞ
4p

� �
FW: ð4Þ
It is common practice to rewrite the FW as Sð~rÞ. This term Sð~rÞ is called the source distribution since it results from the appli-
cation of the fission operator F to the flux W. Therefore, Sð~rÞ is neither probability density function nor cumulative distribu-
tion function, and as is the case for the neutron flux W in Eq. (2), there is freedom in normalizing Sð~rÞ. After defining a new
integral kernel H ~r0 !~rð Þ as
Z

V
H ~r0 !~rð Þf ~r0ð ÞdV 0 ¼ FT�1 vðEÞ

4p

� �
ðf Þ: ð5Þ
Eq. (4) can be rewritten as
Sð~rÞ ¼ 1
keff

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0: ð6Þ
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Physically, this kernel H ~r0 !~rð Þ is to be understood as the expected number of direct-descendent (first generation) neutrons
produced via fission per unit volume at~r due to a fission neutron that was produced at~r0. Eq. (6) is a special case of the gen-
eral eigenvalue equation shown below.
Sjð~rÞ ¼
1
kj

Z
V

H ~r0 !~rð ÞSj ~r0ð ÞdV 0 ð7Þ
IIn this equation, the eigenvalues kj; j P 0 are assumed to be discrete and ordered jk0j > jk1jP jk2jP � � � and the correspond-
ing eigenfunctions are denoted Sjð~rÞ; j ¼ 0;1; . . . (where ‘‘0” implies the fundamental mode). The fundamental mode eigen-
value k0 is keff and its eigenfunction is normalized as
keff � k0 ¼
Z

V
S0ð~rÞdV : ð8Þ
This normalization cannot be done for all non-fundamental mode eigenfunctions because some modes may integrate to zero
over the domain. If not, the following normalization is made.
kj ¼
Z

V
Sjð~rÞdV when

Z
V

Sjð~rÞdV – 0: ð9Þ
It is not known whether all eigenvalues of continuous energy cross-section problems are real and discrete. However, proofs
do exist for mono-energetic transport, regardless of whether scattering is isotropic or anisotropic [4].

Instead of trying to solve for the eigenvalues of Eq. (7) directly by estimating and solving the matrix form of H ~r0 !~rð Þ, a
time series approach termed the Coarse Mesh Projection Method (CMPM) has been developed. CMPM is based on the asymp-
totic linearity of the MC process whose rigorous derivation is presented below. The backbone of this theory has been com-
piled from several sources [3,5–7] whose origin dates back to classical work by Lieberoth [8]. The theory has been
significantly expanded with the proof of an assumption made in these sources.

2.1. Asymptotic linearity of the stationary monte carlo process

In modern MC calculations, batches of neutrons are generated in a specified distribution and tracked to accumulate sta-
tistics of physical properties. Simulating one batch of neutrons (one realization of the problem) is known as running one cy-
cle. This process is repeated for many cycles, always with the same number, i.e., the same total weight of starting neutrons.
The starting location for the neutrons in each cycle is dependent on the location of fission events from the previous cycle.
These starting locations are updated each cycle so that they eventually match the true source distribution of the problem
within statistical fluctuations. When this condition is met, the distribution is said to be stationary.

Assuming that the source distribution is stationary, a particular realization of the source distribution at the end of cycle m,
denoted S

_
ðmÞð~rÞ, is expressed as the sum of a deterministic part and a fluctuating part
S
_
ðmÞð~rÞ ¼ NSð~rÞ þ

ffiffiffiffi
N
p

e
_ðmÞð~rÞ: ð10Þ
The hats above S
_
ðmÞð~rÞ and e

_ðmÞð~rÞ are used to indicate a stochastic realization of the raw (unnormalized) source distribution
representing the collection of fission sites and statistical weights after simulating all particles in cycle m and N represents the
number of particles per cycle. The terms N and

ffiffiffiffi
N
p

are included as scaling factors, as will be explained next.
The deterministic part Sð~rÞ is the expectation of source distribution defined as
Sð~rÞ � 1
N

E S
_
ðmÞð~rÞ

� �
ð11Þ
Eqs. (10) and (11) imply that
E e
_ðmÞð~rÞ
h i

¼ 0: ð12Þ
Since
R

V S
_
ðmÞð~rÞdV ’ OðNÞ where V is the domain of space coordinates, it is clear that

R
V Sð~rÞdV ’ Oð1Þ. The variance ofR

V S
_
ðmÞð~rÞdV is assumed to be OðNÞ taking into account particle population dynamics as in previous work [3,5–7]. Therefore,
OðNÞ ¼ var
Z

V
S
_
ðmÞð~rÞdV

� �
� E

Z
V

S
_
ðmÞð~rÞ � NSð~rÞ

� �
dV

	 
2
" #

: ð13Þ
Applying Eq. (10) yields
OðNÞ ¼ E
Z

V

ffiffiffiffi
N
p

e
_ðmÞð~rÞdV

	 
2
" #

ð14Þ
indicating that
R

V e
_ðmÞð~rÞdV ’ Oð1Þ. Since the expected number of fission born neutrons in the domain V is proportional to N,

the number of fission born neutrons may be considered the Poisson random variable with the expectation proportional to N
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if each starting neutron is equated to a radioactive entity. The variance of a Poisson random variable is equal to its mean.

Therefore, the population dynamics formulation of scaling, var
R

V S
_
ðmÞð~rÞdV

� �
’ OðNÞ, is the only assumption in the theory

presented below unlike previous work [3,5–7] which additionally made an assumption about the expectation of S
_
ðmþ1Þ con-

ditional upon a realization of S
_
ðmÞ. After each cycle m, the fundamental mode eigenvalue is estimated as
k
_
ðmÞ ¼ 1

N

Z
V

S
_
ðmÞð~rÞdV : ð15Þ
Using Eq. (11), the expected eigenvalue is
k � E k
_
ðmÞ

� �
¼
Z

V
Sð~rÞdV : ð16Þ
This is the source normalization condition independent of N and corresponding to Eq. (8).
Next, a model is developed that describes how the source distribution evolves from one cycle to the next. The fission

source distribution after simulating one batch of particles can be written as
S
_
ðmÞð~rÞ ¼

XCðmÞ
i¼1

wðmÞi d ~r �~rið Þ; ð17Þ
where CðmÞ is the number of fission sites during the mth stationary cycle, wðmÞi is the statistical weight assigned to the ith fis-
sion site, and d is a Dirac delta function such that

R
d ~r �~rið Þðf ÞdV ¼ f ~rið Þ and d ~r �~rið Þ ¼ 0 when~r –~ri. A vector may be intro-

duced to represent the collection of weights that correspond to the specific fission sites~r1;~r2; . . . ;~rCðmÞ :
~W ðmÞ � wðmÞ1 ;wðmÞ2 ; . . . ;wðmÞ
CðmÞ

� �
;

where using a sufficiently small volume DVj containing only~rj,
wðmÞj ¼ ~W ðmÞ
� �

j
¼
Z

DVj

S
_
ðmÞð~rÞdV ; ~rj 2 DVj; ~ri R DVj; i – j:
The particle weights are normalized such that
XCðmÞ
j¼1

wðmÞj ¼
Z

V
S
_
ðmÞð~rÞdV : ð18Þ
The probability that a particular fission site~rj is chosen as a neutron source location at the beginning of cycle mþ 1 is deter-
mined from the weight distribution of the previous cycle m as
pðmþ1Þ ~r ¼~rj
� �

¼
wðmÞjPCðmÞ

i¼1 wðmÞi

: ð19Þ
If N total starter neutrons are used in cycle mþ 1, then it is expected that Npðmþ1Þ ~r ¼~rj
� �

will start at that particular fission site~rj.
Since the kernel H ~rj !~r

� �
in Eq. (6) can be interpreted as the expected next-generation fission-born-neutron weight per

unit volume at~r given the unit fission-born-neutron weight at~rj, the expected weight distribution for neutrons that will start
at~r after simulating N neutron histories in cycle mþ 1, assuming that the unit weight at~rj is the only weight produced in
cycle m, is formally expressed as
E S
_
ðmþ1Þð~rÞj~W ðmÞ ¼ 0; . . . ;0; 1|{z}

jth element

;0; . . . ;0

0
@

1
A

2
4

3
5 ¼ E S

_
ðmþ1Þð~rÞjS

_
ðmÞð~rÞ ¼ d ~r �~rj

� �� �
¼ NH ~rj !~r

� �
: ð20Þ
If Eq. (20) is multiplied by pðmþ1Þ ~r ¼~rj
� �

from Eq. (19) and is summed over all fission sites ~r1;~r2; . . . ;~rCðmÞ
� �

, then the expected
weight distribution given the distribution of weights ~W ðmÞ in Eq. (17) is obtained as
E S
_
ðmþ1Þð~rÞjS

_
ðmÞð~rÞ ¼

XCðmÞ
i¼1

wðmÞi d ~r �~rið Þ
" #

¼ E S
_
ðmþ1Þð~rÞj~W ðmÞ ¼ wðmÞ1 ;wðmÞ2 ; . . . ;wðmÞ

CðmÞ

� �� �

¼
XCðmÞ
j¼1

E S
_
ðmþ1Þð~rÞj~W ðmÞ ¼ ð0; . . . ;0; 1|{z}

jth element

; 0; . . . ;0Þ

2
4

3
5pðmþ1Þ ~r ¼~rj

� �

¼ N

PCðmÞ

j¼1 wðmÞj H ~rj !~r
� �

PCðmÞ

j¼1 wðmÞj

: ð21Þ
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The numerator of Eq. (21) can be manipulated as
XCðmÞ
j¼1

wðmÞj H ~rj �~r
� �

¼
XCðmÞ
j¼1

wðmÞj H ~rj !~r
� � Z

V
d ~r0 �~rj
� �

dV 0 ð22Þ

¼
XCðmÞ
j¼1

Z
V

wðmÞj d ~r0 �~rj
� �

H ~rj !~r
� �

dV 0 ð23Þ

¼
XCðmÞ
j¼1

Z
V

wðmÞj d ~r0 �~rj
� �

H ~r0 !~rð ÞdV 0: ð24Þ

¼
Z

V

XCðmÞ
j¼1

wðmÞj d ~r0 �~rj
� �

H ~r0 !~rð ÞdV 0: ð25Þ
Eq. (24) is obtained from the relation dðx� yÞf ðxÞ ¼ dðx� yÞf ðyÞ. Apply Eq. (17) to Eq. (25) to obtain
XCðmÞ
j¼1

wðmÞj H ~rj �~r
� �

¼
Z

V
S
_
ðmÞ ~r0ð ÞH ~r0 !~rð ÞdV 0: ð26Þ
Using Eq. (18) and (26), Eq. (21) is rewritten as
E S
_
ðmþ1Þð~rÞjS

_
ðmÞð~rÞ

� �
¼ N

R
V S
_
ðmÞ ~r0ð ÞH ~r0 !~rð ÞdV 0R

V S
_
ðmÞ ~r0ð ÞdV 0

: ð27Þ
This is the conditional distribution that represents the expected source distribution at the end of cycle mþ 1 given the source
distribution S

_
ðmÞð~rÞ at the end of cycle m. Eq. (27) and the corresponding discrete version were assumed in previous work

[3,5–7]. Here Eq. (27) has been formally derived. The stochastic equation describing S
_
ðmþ1Þ can then be written as
S
_
ðmþ1Þð~rÞ ¼ N

R
V S
_
ðmÞ ~r0ð ÞH ~r0 !~rð ÞdV 0R

V S
_
ðmÞ ~r0ð ÞdV 0

þ
ffiffiffiffi
N
p

e
_ðmþ1Þð~rÞ: ð28Þ
The fluctuating term e
_ðmþ1Þð~rÞ is a noise component resulting from population normalization of starting neutrons and sub-

sequent transport tracking in cycle mþ 1. As before, the N and
ffiffiffiffi
N
p

are scaling terms. Eqs. (27) and (28) imply that e
_ðmþ1Þð~rÞ

satisfies
E e
_ðmþ1Þð~rÞjS

_
ðmÞð~rÞ

� �
¼ 0: ð29Þ
This result further implies that
E e
_ðmþ1Þð~rÞ
h i

¼ E E e
_ðmþ1Þð~rÞjS

_
ðmÞð~rÞ

� �� �
¼ 0: ð30Þ
It is important to note that Eqs. (10) and (29) yield,
E e
_ðmþ1Þð~rÞje

_ðmÞð~rÞ
h i

¼ 0: ð31Þ
Substituting (10) into (28) and dividing through by N results in
Sð~rÞ þ 1ffiffiffiffi
N
p e

_ðmþ1Þð~rÞ ¼

R
V NS ~r0ð Þ þ

ffiffiffiffi
N
p

e
_ðmÞ ~r0ð Þ

h i
H ~r0 !~rð ÞdV 0R

V NS ~r0ð Þ þ
ffiffiffiffi
N
p

e
_ðmÞ ~r0ð Þ

h i
dV 0

þ 1ffiffiffiffi
N
p e

_ðmþ1Þð~rÞ: ð32Þ
To reduce Eq. (32) further, the first term on the right hand side (RHS) must be manipulated. First, N�1 is multiplied to the
numerator and denominator. Next, Eq. (16) is applied to the denominator resulting in
R
V H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ 1ffiffiffi

N
p
R

V H ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0

k 1þ 1
k
ffiffiffi
N
p
R

V e
_ðmÞ ~r0ð ÞdV 0

� � : ð33Þ
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At this point, the denominator is in the form 1þ x, which can be written in series form as 1� xþ x2 � x3 þ � � �. Rewriting the
denominator this way yields
1
k

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ 1
k
ffiffiffiffi
N
p

Z
V

H ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0

� �

� 1� 1
k
ffiffiffiffi
N
p

Z
V

e
_ðmÞ ~r0ð ÞdV 0 þ 1

k2N

Z
V

e
_ðmÞ ~r0ð ÞdV 0

� � Z
V

e
_ðmÞ ~r00ð ÞdV 00

� �
� � � �

� �
: ð34Þ
All terms are multiplied out and the terms of order N�1 or smaller (higher powers of N�1=2Þ are combined into a leading order
term O N�1

� �
, yielding
1
k

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ 1
k
ffiffiffiffi
N
p

Z
V

H ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0 � 1

k2 ffiffiffiffi
N
p

Z
V

H ~r00 !~rð ÞS ~r00ð ÞdV 00
Z

V
e
_ðmÞ ~r0ð ÞdV 0 þ O N�1

� �
: ð35Þ
A kernel term is defined
A ~r0 !~rð Þ ¼ 1
k

H ~r0 !~rð Þ � 1
k

Z
V

H ~r00 !~rð ÞS ~r00ð ÞdV 00
� �

ð36Þ
allowing Eq. (35) to be simplified to
1
k

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ 1ffiffiffiffi
N
p

Z
V

A ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0 þ O N�1

� �
: ð37Þ
Now, Eq. (37) is substituted back into the first term on the RHS of Eq. (32) to obtain
Sð~rÞ þ 1ffiffiffiffi
N
p e

_ðmþ1Þð~rÞ ¼ 1
k

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ 1ffiffiffiffi
N
p

Z
V

A ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0 þ 1ffiffiffiffi

N
p e

_ðmþ1Þð~rÞ þ O N�1
� �

: ð38Þ
Taking the expectation of Eq. (38) and using Eqs. (12) and (30) yield
Sð~rÞ ¼ 1
k

Z
V

H ~r0 !~rð ÞS ~r0ð ÞdV 0 þ O N�1
� �

: ð39Þ
Recall that the exact fundamental mode solution is
S0ð~rÞ ¼
1
k0

Z
V

H ~r0 !~rð ÞS0 ~r0ð ÞdV 0: ð40Þ
Subtracting Eq. (40) from Eq. (39) yields
Sð~rÞ � S0ð~rÞ �
Z

V
H ~r0 !~rð Þ S ~r0ð Þ

k
� S0 ~r0ð Þ

k0

� �
dV 0 ¼ O N�1

� �
: ð41Þ
Suppose that a bias of order N�a exists in the expected source distribution
Sð~rÞ � S0ð~rÞ ¼ O N�a� �
; ð42Þ
which also implies that
k� k0 ¼ O N�a� �
; ð43Þ
by Eqs. (8) and (16). Using Eqs. (42) and (43), Eq. (41) can be rewritten
O N�a� �
¼ O N�1

� �
: ð44Þ
It is clear that the order of bias must be equivalent, i.e., a ¼ 1, otherwise the RHS and LHS of Eq. (44) will differ by orders of
magnitude as N !1. Therefore, we obtain
Sð~rÞ � S0ð~rÞ ¼ O N�1
� �

; ð45Þ

k� k0 ¼ O N�1
� �

: ð46Þ
Now, we can return to the derivation of the cycle-wise representation of the source distribution. Subtracting Eq. (39) from
Eq. (38) and multiplying through by

ffiffiffiffi
N
p

yields
e
_ðmþ1Þð~rÞ ¼

Z
V

A ~r0 !~rð Þe
_ðmÞ ~r0ð ÞdV 0 þ e

_ðmþ1Þð~rÞ þ O N�1=2
� �

: ð47Þ
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A new operator A0 ~r0 !~rð Þ is introduced:
A0 ~r0 !~rð Þ ¼ 1
k0

H ~r0 !~rð Þ � S0ð~rÞ½ �: ð48Þ
From Eqs. (36) (40), (45) and (46), it is clear that
A ~r0 !~rð Þ ¼ A0 ~r0 !~rð Þ þ O N�1
� �

: ð49Þ
Substituting Eq. (49) in Eq. (47) and using operator notation such that
A0 e
_ðmÞ ¼

Z
A0 ~r0 !~rð Þe

_ðmÞ ~r0ð ÞdV 0; ð50Þ
we obtain
e
_ðmþ1Þ ¼ A0 e

_ðmÞ þ e
_ðmþ1Þ þ O N�1=2

� �
: ð51Þ
The operator A0 is termed the Noise Propagation (NP) operator.
Two important properties of fluctuation and noise are worth mentioning:
E e
_ðpÞe

_ðqÞ
h i

¼ 0; p > q; ð52Þ

E e
_ðpÞ e

_ðqÞ
h i

¼ 0; p > q: ð53Þ
Eq. (52) can be derived by considering for cycles p > q. First,
E e
_ðpÞe

_ðqÞ
h i

¼ E E e
_ðpÞe

_ðqÞje
_ðp�1Þ; e

_ðqÞ
h ih i

ð54Þ
by a theorem concerning conditional expectation in probability theory [9]. Since e
_ðqÞ is fixed in the conditional expectation, it

can be pulled out:
E E e
_ðpÞe

_ðqÞje
_ðp�1Þ; e

_ðqÞ
h ih i

¼ E e
_ðqÞE e

_ðpÞje
_ðp�1Þ; e

_ðqÞ
h ih i

: ð55Þ
Since Eqs. (27) and (28) imply that e
_ðpÞ is the noise in cycle p generated after fixing e

_ðp�1Þ (S
_
ðp�1ÞÞ and the rules for population

normalization and particle tracking, which govern the law of the noise, are the same for all cycles, the conditioning on
e
_ðqÞ ðq 6 p� 1Þ can be dropped in Eq. (55):
E e
_ðqÞE e

_ðpÞje
_ðp�1Þ; e

_ðqÞ
h ih i

¼ E e
_ðqÞE e

_ðpÞje
_ðp�1Þ

h ih i
: ð56Þ
Apply Eq. (31) to finally obtain
E e
_ðpÞe

_ðqÞ
h i

¼ E e
_ðqÞE e

_ðpÞje
_ðp�1Þ

h ih i
¼ 0; p > q: ð57Þ
Eq. (53) is derived similarly:
E e
_ðpÞ e

_ðqÞ
h i

¼ E E e
_ðpÞ e

_ðqÞje
_ðp�1Þ; e

_ðqÞ
h ih i

¼ E e
_ðqÞE e

_ðpÞje
_ðp�1Þ; e

_ðqÞ
h ih i

¼ E e
_ðqÞE e

_ðpÞje
_ðp�1Þ

h ih i
¼ 0; p > q: ð58Þ
3. Eigenvalues of the noise propagation operator

The properties of the NP operator A0 are discussed in terms of the eigenfunctions Sj of Eq. (7), since the source fluctuation
~eðmÞ can be expanded as
e
_ðmÞð~rÞ ¼ a

_ðmÞ
0 S0ð~rÞ þ a

_ðmÞ
1 S1ð~rÞ þ a

_ðmÞ
2 S2ð~rÞ þ � � � ð59Þ
where a
_ðmÞ

j are regarded as stochastically realized constants. Two cases are examined: A0S0 and A0Sj; j P 1. In the first case,
A0S0½ �ð~rÞ ¼ 1
k0

Z
H ~r0 !~rð Þ � S0ð~rÞ½ �S0 ~r0ð ÞdV 0 ¼ 1

k0

Z
H ~r0 !~rð ÞS0 ~r0ð ÞdV 0 �

Z
S0ð~rÞS0 ~r0ð ÞdV 0

� �
¼ S0ð~rÞ � S0ð~rÞ ¼ 0; ð60Þ
where Eqs. (7) and (8) were used at the third equality. In the second case,
A0Sj

 �

ð~rÞ ¼ 1
k0

Z
H ~r0 !~rð Þ � S0ð~rÞ½ �Sj ~r0ð ÞdV 0 ¼ 1

k0

Z
H ~r0 !~rð ÞSj ~r0ð ÞdV 0 � 1

k0

Z
S0ð~rÞSj ~r0ð ÞdV 0

¼ kj

k0
Sjð~rÞ �

S0ð~rÞ
k0

Z
Sj ~r0ð ÞdV 0; ð61Þ
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where Eq. (7) was used at the third equality. Depending on the integration of the jth eigenfunction over the domain (whether
or not it is zero), we have one of two possibilities for Eq. (61):
A0Sj

 �

ð~rÞ ¼ kj

k0
Sjð~rÞ if

Z
V

Sjð~rÞdV ¼ 0; j P 1 ð62Þ

A0Sj

 �

ð~rÞ ¼ A0 Sjð~rÞ � S0ð~rÞ

 �

¼ kj

k0
Sjð~rÞ � S0ð~rÞ

 �

if
Z

V
Sjð~rÞdV – 0; j P 1; ð63Þ
where in Eq. (63), Eq. (60) was used at the first equality and Eq. (9) at the second equality. According to Eq. (60), the fun-
damental mode eigenfunction S0ð~rÞ is mapped identically to zero. This indicates that the fluctuation associated with the fun-
damental mode is always corrected by population normalization. Eqs. (62) and (63) combined with Eq. (51) imply that the
eigenvalues of NP process are ki=k0; i ¼ 1;2; . . . ; if the number of particles per cycle is sufficiently large.

4. Discrete representation

We quickly cover the discrete representation of the MC NP process corresponding to Eqs. (51), (12), (30), (52) and (53),
assuming N is sufficiently large:
~eðmþ1Þ ¼ A0~eðmÞ þ~eðmþ1Þ; ð64Þ
E ~eðmÞ

 �

¼ 0; ð65Þ
E ~eðmÞ

 �

¼ 0; ð66Þ

E ~eðmÞ �~eðnÞ

 �

¼ E ~eðmÞð~eðnÞÞT
h i

¼ 0; m > n; ð67Þ

E ~eðmÞ �~eðnÞ

 �

¼ E ~eðmÞð~eðnÞÞT
h i

¼ 0; m > n: ð68Þ
In these equations,~eðmÞ and~eðmÞ are p� 1 matrices (column vectors with p entries), A0 is the NP matrix of size p� p corre-
sponding to the operator in Eq. (51), and � signifies an outer product (T in superscript signifies a transpose). The number of
entries ðpÞ stands for the number of spatial bins where the source distribution is tallied. Hereafter, A0 is to be understood as
matrix if it appears with the vector notation with arrow.

The reason for spatially discretized representation is stated as follows. ‘‘If the eigenvalue sought after is extracted statis-
tically at the final step of calculation, the answer does not suffer from discretization error in the same sense as deterministic
approaches. The critical issue of statistical extraction is not the size of bins but the cancellation of eigenmodes.” Strictly
speaking, there is no mathematical proof of this statement in the nuclear engineering discipline. However, it was demon-
strated in previous work [3] for the dominant eigenvalue calculation with two bins, which agreed with Green’s function
benchmark results. In addition, if one surveys various physical sciences experiments, the parameter determination by fea-
ture extraction with signal processing techniques is found to be very popular. Therefore, our guiding principle is the effective
cancellation of the eigenmodes other than the one sought after. To this end, we have developed a projection technique for
creating one dimensional time series that exclusively contains the fluctuating component associated with the eigenmode
sought after. This is termed Coarse Mesh Projection Method (CMPM) and is described in next section.

5. Coarse Mesh Projection Method

The steps of CMPM are as follows: (1) compute the NP matrix A0 and its eigenvectors, (2) apply the ith eigenvector to the
source fluctuation vector~eðmÞ in order to produce a one dimensional time series if the ith mode eigenvalue is sought after, and
(3) perform an AR(1) fitting to the resulting time series and calculate the autocorrelation coefficient. As will be shown, this
coefficient is the desired eigenvalue ratio, i.e., ki=k0 from Eq. (7).

5.1. Noise propagation matrix

The first task is to obtain the formal representation of A0. First, Eq. (64) is multiplied throughout on the right by~eðmÞ as an
outer product yielding
~eðmþ1Þ �~eðmÞ ¼ A0~eðmÞ �~eðmÞ þ~eðmþ1Þ �~eðmÞ: ð69Þ
Then, taking the expectation and using Eq. (67), we obtain
E ~eðmþ1Þ �~eðmÞ

 �

¼ A0E ~eðmÞ �~eðmÞ

 �

: ð70Þ
Defining a general cross covariance matrix as
Li � E ~eðmþiÞ �~eðmÞ

 �

: ð71Þ
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A0 can be expressed as
A0 ¼ L1L�1
0 : ð72Þ
Therefore, A0 can be evaluated via the computation of the sample lag zero and one cross covariance matrices.

5.2. Projection process

The eigenvalue problem of A0 is
A0
~bi ¼ ki

~bi; i ¼ 1; . . . ; p; ð73Þ

A�0
~dj ¼ k�j

~dj; j ¼ 1; . . . ;p: ð74Þ
Here, ki corresponds to ki=k0 and A�0 is the adjoint (or complex conjugate transpose) of A0. Since A0 is real, the adjoint is equal
to the transpose
A�0 ¼ AT
0: ð75Þ
Since det A0 � kIð Þ ¼ det AT
0 � kI

� �
(where det is the determinant and I is the identity matrix), A0 and AT

0 share the same set of
eigenvalues,
ki ¼ k�j for i ¼ j: ð76Þ
In addition, their eigenvectors satisfy
~bi;
~dj

D E
¼ 0 if ki – k�j and i – j; ð77Þ
where �; �h i indicates an inner product (or dot product) of the two column vectors. In other notation, this is equivalent to
~d;~b
D E

¼~dT~b. The proof of Eq. (77) is shown below. With Eqs. (75) and (74) becomes
AT
0
~dj ¼ kj

~dj; 1 6 j 6 p: ð78Þ
Taking the transpose of each side of (78) yields
~dT
j A0 ¼ kj

~dT
j : ð79Þ
First, apply ~dT
j to Eq. (73) from left to obtain
~dT
j A0

~bi

� �
¼ ki

~dT
j
~bi: ð80Þ
Next, apply ~bi to Eq. (79) from right to obtain
~dT
j A0

� �
~bi ¼ kj

~dT
j
~bi: ð81Þ
Since the LHSs of Eqs. (80) and (81) are equal, one obtains
0 ¼ kj � ki
� �~dT

j
~bi ð82Þ
implying that either ki ¼ kj or ~dT
j
~bi ¼ 0.

If the eigenvector of the transpose of NP matrix, which is~di, is applied to Eq. (64) and then Eq. (79) is applied, we obtain
~di;~eðmþ1Þ
D E

¼ ki
~di;~eðmÞ
D E

þ ~di;~eðmþ1Þ
D E

: ð83Þ
Defining the components of a one dimensional time series as
yðmÞ � ~di;~eðmÞ
D E

; ð84Þ

zðmÞ � ~di;~eðmÞ
D E

: ð85Þ
yðmÞ satisfies
yðmþ1Þ ¼ kiyðmÞ þ zðmþ1Þ: ð86Þ
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In addition, using Eqs. (65), (66) and (68), we obtain
E yðmÞ

 �

¼ E ~di;~eðmÞ
D Eh i

¼ ~di; E ~eðmÞ

 �D E

¼ 0; ð87Þ

E zðmÞ

 �

¼ E ~di;~eðmÞ
D Eh i

¼ ~di; E ~eðmÞ

 �D E

¼ 0; ð88Þ

E zðmÞzðnÞ

 �

¼ E ~di;~eðmÞ
D E

~di;~eðnÞ
D Eh i

¼ ~di �~di; E ~eðmÞ �~eðnÞ

 �D E

¼ 0; m > n: ð89Þ
In Eq. (89), ~di;~eðmÞ
D E

~di;~eðnÞ
D E

¼ ~di �~di;~eðmÞ �~eðnÞ
D E

was also used.

5.3. Time series autoregressive process

To solve for the coefficient ki in Eq. (86), which is the eigenvalue in Eqs. (73)–(76) and corresponds to the eigenvalue ratio
ki=k0; yðmÞ is multiplied throughout and the expectation is taken:
E yðmþ1ÞyðmÞ

 �

¼ kiE yðmÞyðmÞ

 �

þ E zðmþ1ÞyðmÞ

 �

: ð90Þ
Using Eq. (67), the last term on the RHS becomes zero:
E zðmþ1ÞyðmÞ

 �

¼ E ~di;~eðmþ1Þ
D E

~di;~eðmÞ
D Eh i

¼ E ~di �~di;~eðmþ1Þ �~eðmÞ
D Eh i

¼ ~di �~di; E ~eðmþ1Þ �~eðmÞ

 �D E

¼ 0: ð91Þ
Eq. (90) then reduces to
E yðmþ1ÞyðmÞ

 �

¼ kiE yðmÞyðmÞ

 �

ð92Þ
and the coefficient ki can be solved for as
ki ¼
E yðmþ1ÞyðmÞ

 �
E yðmÞyðmÞ½ � : ð93Þ
Eq. (93) highlights the significance of CMPM. Simple AR(1) fitting is enough for the computation of ki=k0; in other words,
ki=k0 is obtained as autocorrelation coefficient. Since kij j < 1; i P 1 under the stationarity assumption which traces back
to Eq. (10), the AR(1) fitting is guaranteed to be stable [10]. The method requires no input other than the standard input
for MC calculation for nuclear criticality and reactor analysis.

5.4. Error estimation

The variance of the lag k autocorrelation coefficient rk of an AR(1) process driven by normal noise is given by [10]
var rk½ � ¼
1
M
ð1þ /2Þð1� /2kÞ

1� /2 � 2k/2k

 !
; ð94Þ
where / is the lag 1 autocorrelation coefficient and M is the number of stationary cycles. Since the eigenvalue ratio ðki=k0)
corresponds to the lag 1 autocorrelation coefficient ðki) of the AR(1) process of Eq. (86), the error of ki=k0 is estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½ki�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M
ð1� k2

i Þ
r

: ð95Þ
Note that one can assume normality for the elements of~eðmÞ if the number of particles per cycle (NÞ is sufficiently large. Prac-
tically, Eq. (95) suggests the increase of the number of active (stationary) cycles instead of the number of particles per cycle if
the latter is sufficiently large. Also, Eq. (95) enables one to compute the standard deviation of an estimate of ki from a single
run of Monte Carlo calculation.

6. Theory for practical implementation issues

There are three main steps in CMPM: (1) determination of an appropriate projection vector, (2) application of the projec-
tion vector to the source fluctuation, (3) time series analysis of the projected series. Though it is a straightforward process,
specific considerations when implementing this method into production codes have not yet been discussed. In particular,
there is a strong desire to reduce memory usage. Applied in a rudimentary way, the source distribution from every bin
and every cycle must be stored throughout the run. After the run is complete, the source fluctuations are computed via
the subtraction of the mean source distribution and the eigenvectors of the noise propagation matrix are computed and then
applied to the source fluctuation. Saving all of this data throughout the run is an enormous task; the number of storage ele-
ments required for this implementation is (p source bins) � (M active cycles). It is very common for there to be thousands of
active cycles per run, so it is easy to see how this number can quickly become unmanageable. Also, there is a strong demand
on the code developer side for the incremental updating of ki along the actual progression of cycles. Therefore, we derive
alternative expressions of ki and A0. To this end, the calculation of A0 using the actual source distribution will be derived,
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from which the equivalent projection vectors are calculated. Next, the calculation of ki using the actual source distribution
will be derived.

We rewrite Eq. (64) as follows. Let~S0 be the true mean of source distribution in discrete representation. The correspond-
ing relations to Eqs. (8) and (60) are
ð1;1; . . . ;1Þ~S0 ¼ k0; ð96Þ
A0
~S0 ¼ 0: ð97Þ
Using Eq. (97), A0N~S0 is added to the RHS of Eq. (64) multiplied by
ffiffiffiffi
N
p

to obtain
ffiffiffiffi
N
p

~eðmþ1Þ ¼ A0 N~S0 þ
ffiffiffiffi
N
p

~eðmÞ
� �

þ
ffiffiffiffi
N
p

~eðmþ1Þ ¼ A0
~SðmÞ þ

ffiffiffiffi
N
p

~eðmþ1Þ; ð98Þ
where ~SðmÞ ¼ N~S0 þ
ffiffiffiffi
N
p

~eðmÞ corresponding to Eq. (10). Now N~S0 is added to both sides of Eq. (98), yielding
~Sðmþ1Þ ¼ A0
~SðmÞ þ~gðmþ1Þ; ð99Þ
where~gðmþ1Þ ¼ N~S0 þ
ffiffiffiffi
N
p

~eðmþ1Þ. Applying~SðmÞ to both sides on the right as an outer product and taking the expectation results
in
E ~Sðmþ1Þ �~SðmÞ
h i

¼ A0E ~SðmÞ �~SðmÞ
h i

þ E ~gðmþ1Þ �~SðmÞ
h i

; ð100Þ

E ~Sðmþ1Þ �~SðmÞ
h i

¼ A0E ~SðmÞ �~SðmÞ
h i

þ E
ffiffiffiffi
N
p

~eðmþ1Þ þ N~S0

� �
�

ffiffiffiffi
N
p

~eðmÞ þ N~S0

� �h i
; ð101Þ

E ~Sðmþ1Þ �~SðmÞ
h i

¼ A0E ~SðmÞ �~SðmÞ
h i

þ N2~S0 �~S0: ð102Þ
Here, Eqs. (65)–(67) are used to arrive at Eq. (102). Solving for A0 yields
A0 ¼ E ~Sðmþ1Þ �~SðmÞ
h i

� N2~S0 �~S0

n o
E ~SðmÞ �~SðmÞ
h in o�1

: ð103Þ
Since N2~S0 �~S0 is estimated as the sample mean of ~SðmÞ �~SðmÞ, this becomes
A0 ¼ E ~Sðmþ1Þ �~SðmÞ
h i

E ~SðmÞ �~SðmÞ
h in o�1

� I: ð104Þ
where I is the identity matrix. Therefore, the NP matrix A0 and the projection vector ~di can be calculated using the actual
source distribution without the subtraction of sample mean source distribution.

Next, an expression of ki other than Eq. (93) will be derived using only the source distributions. Multiplying Eq. (99) by~dT
i

on the left and using Eq. (79), a new times series can be written as
yðmþ1Þ ¼ kiyðmÞ þ zðmþ1Þ; ð105Þ

yðmÞ ¼ ~di;~SðmÞ
D E

; ð106Þ

zðmÞ ¼ ~di;~gðmÞ
D E

: ð107Þ
To solve for the autocorrelation coefficient, Eq. (105) is multiplied by yðmÞ throughout and the expectation is taken:
E yðmþ1ÞyðmÞ

 �

¼ kiE yðmÞyðmÞ

 �

þ E zðmþ1ÞyðmÞ

 �

: ð108Þ
In this case, the last term in (108) is
E zðmþ1ÞyðmÞ

 �

¼ E ~di;~gðmþ1Þ
D E

~di;~SðmÞ
D Eh i

¼ E ~di �~di;~gðmþ1Þ �~SðmÞ
D Eh i

¼ ~di �~di; E ~gðmþ1Þ �~SðmÞ
h iD E

: ð109Þ
Using Eqs. (65)–(67), the expectation term inside the inner product is simply
E ~gðmþ1Þ �~SðmÞ
h i

¼ E N~S0 þ
ffiffiffiffi
N
p

~eðmþ1Þ
� �

� N~S0 þ
ffiffiffiffi
N
p

~eðmÞ
� �h i

¼ N2~S0 �~S0 ð110Þ
reducing Eq. (109) to
E zðmþ1ÞyðmÞ

 �

¼ ~di �~di;N
2~S0 �~S0

D E
¼ N2 ~di;~S0

D E
~di;~S0

D E
¼ 0; ð111Þ
because
ki
~di;~S0

D E
¼ ki

~di;~S0

D E
¼ AT

0
~di;~S0

D E
¼ ~di;A0

~S0

D E
¼ 0; ð112Þ
where Eq. (78) was used at the second step and Eq. (97) was used at the last step. Thus, Eq. (108) can be manipulated as
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~di �~di; E ~Sðmþ1Þ �~SðmÞ
h iD E

¼ E ~di;~Sðmþ1Þ
D E

~di;~SðmÞ
D Eh i

¼ E yðmþ1ÞyðmÞ

 �

¼ kiE yðmÞyðmÞ

 �

¼ kiE ~di;~SðmÞ
D E

~di;~SðmÞ
D Eh i

¼ ki
~di �~di; E ~SðmÞ �~SðmÞ

h iD E
: ð113Þ
Hence, ki, which is the eigenvalue in Eqs. (73)–(76) and corresponds to the eigenvalue ratio ki=k0, has other expression using
time series output:
ki ¼
~di �~di; E ~Sðmþ1Þ �~SðmÞ

h iD E
~di �~di; E ~SðmÞ �~SðmÞ

h iD E : ð114Þ
Eqs. (104) and (114) show that the sample mean subtraction for the computation of the source distribution fluctuation is
unnecessary for the computation of ki, i.e., ki=k0. In addition, only the source distributions at the most recent two cycles need
to be stored along with the actual progression of cycles. Practically, the use of Eqs. (104) and (114) reduces storage require-

ment and enables one to update ki in an on-the-fly manner via the incremental updating of E ~Sðmþ1Þ �~SðmÞ
h i

; E ~SðmÞ �~SðmÞ
h i

and ~di.
7. Problem descriptions

The results in the subsequent sections were all generated based on four problems that are presented in this section. They
are each fully described here. Problem 1 is a one-energy group, multi-region 1-D slab with vacuum boundary conditions. The
make-up of Problem 1 is illustrated in Fig. 1. There are two fuel (fissile) regions on either end of the slab with scattering and
absorbing material between them. This type of problem would most likely be found in criticality safety work. The first four
eigenvalue ratios of this problem (considered the benchmark) were computed using the Green’s Function Method (GFM) [11]
with a 1800-bin mesh across the entire domain and are shown in Table 1. The effective neutron multiplication factor ðk0Þwas
calculated to be 0.424314 by GFM and 0.424314 ± 0.000007 by MC.

Problem 2 is a 2-D checkerboard illustrated in Fig. 2. There are two types of fuel placed alternately in a checkerboard man-
ner making the problem symmetric along the diagonals. The first eigenvalue ratio (k1=k0Þ, also called dominance ratio (DR),
was estimated to be 0.9581 by the analysis of the spectral radius of outer iterations in discontinuous finite element discrete
ordinates methods [12] as shown in Table 2. The effective neutron multiplication factor was calculated to be 1.05450 by the
discrete ordinates method and 1.05450 ± 0.00001 by MC. The higher order eigenvalues were not available by the spectral
radius analysis. Therefore, they were computed by the Fission Matrix Method (FMM) [13] using the discrete ordinates meth-
od with a 2304-bin mesh (48 bins in each coordinate direction) instead, as shown in Table 3.

Problem 3 is the two-dimensional version of an initial core pressurized water reactor (PWR) problem with continuous-
energy cross-sections [14]. The problem is illustrated in Fig. 3; the computation was run using reflecting top and bottom
boundaries. The effective neutron multiplication factor is 1:0187	 0:0004 (1 rÞ using the continuous-energy cross section
data. Only DR was available for this problem, as shown in Table 4. It was calculated using the ARMA(2,1) Half-Domain Fitting
Method (HDFM) [3].
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Fig. 1. Problem 1 – 1D heterogeneous slab.



Table 1
First four benchmark eigenvalue ratios of Problem 1.

GFM using 1800-bin mesh

k1/k0 0.999565
k2/k0 0.304653
k3/k0 0.304635
k4/k0 0.167738
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Fig. 2. Problem 2 – 2D checkerboard.

Table 2
Benchmark DR of Problem 2.

Benchmark by discrete ordinates

k1/k0 0.9581

Table 3
First four eigenvalue ratios of Problem 2 using FMM.

FMM using 2304-bin mesh

k1/k0 0.95740
k2/k0 0.95710
k3/k0 0.92031
k4/k0 0.89708
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Problem 4 is a three-dimensional version of Problem 3. It is nearly the same as Problem 3 except that it includes vertical
modeling of the plenum, top and bottom end plugs inside Zirconium cladding, and the top and bottom support structures.
The detailed specifications are found in [14]. The effective neutron multiplication factor is 1:01249	 0:00055 (1rÞ using the
continuous-energy cross section data. A benchmark DR was calculated to be 0:990	 0:002 (2rÞ by HFDM.
8. CMPM results

Results are presented for the three user-specified parameters that affect the performance of CMPM: the number of par-
ticles per cycle, the number of active cycles, and the mesh used to tally the source distribution. In each case, a ‘‘sufficient”
parameter must be used to obtain accurate results. The definition of sufficiency for each of these parameters will be dis-
cussed in depth and results will be shown that illustrate what happens when the conditions are not met.

8.1. Number of particles per cycle

As indicated by the eigenvalue ratio calculation and its error estimate (Eqs. (93) and (95)), the number of particles per
cycle does not directly influence these results. However, CMPM does assume that there are a sufficient number of neutrons
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Table 4
Benchmark DR of Problem 3.

Benchmark by ARMA(2,1) HDFM

k1/k0 0.9927 ± 0.0017 ð2rÞ
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causing fission events in each individual tally bin, such that every binned source can also be assumed Normal. For this rea-
son, the number of particles per cycle should be at least as large as the standard MC calculations for reactor analysis.

To prove this point that CMPM results are independent of particle population, Problem 2 was tested using varying num-
bers of particles per cycle. Five hundred active cycles were used as well as an appropriate source tally mesh. Results are pre-
sented in Fig. 4 with 2r error bars. As can be seen, the accuracy and error bounds are consistent, illustrating the
independence of CMPM of the number of particles per cycle and justifying the use of Eq. (95) for error estimation. Similar
observations were made when testing other problems in this manner.

8.2. Number of active cycles

Since CMPM is a methodology based on time series, it can be strongly influenced by cycle correlation. The stronger the
correlation, the more cycles are necessary to obtain the accurate representation of a particular eigenmode fluctuation. With-
out enough cycles, the results will be biased, often an underestimating of the eigenvalue. To illustrate this, Problem 1 was
run using 30,000 particles per cycle and varying numbers of active cycles. Results are shown in Fig. 5 with 1r error bars.
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This trend of underestimation was observed in all problems tested, though the rate of convergence to an unbiased esti-
mate varied. A relation has been developed to provide the user with a way of estimating the necessary number of active cy-
cles for each problem. The decay of the correlation between cycles is upper-bounded by the exponential of DR (k1=k0Þ, i.e.,
correlation strength ¼ kgAC

1 , where gAC is the number of active cycles [15]. We impose that there either be a minimum of 500
active cycles or less than a 0.1% correlation between the first and last cycles to ensure unbiased results. If this is the case, the
minimum number of active cycles necessary to obtain unbiased results is estimated as
gAC ¼max½500; lnð10�3Þ= lnðk1Þ�: ð115Þ
If the value of k1=k0 in Table 1 is substituted in k1 in Eq. (115), gAC ¼ 15;876 is obtained. This agrees with Fig. 1. The practical
utility of Eq. (115) is to check if the number of active cycles actually run is larger than the RHS with the output of CMPM
substituted in k1.
8.3. Tally mesh of the fission source distribution

Time series methods analyze fluctuations of binned source distribution and, therefore, do not suffer from discretization
error in the same sense as posing final answers directly from solving the NP matrix as discussed in Section 4. However, there
are two requirements that must be met by the binning scheme: (1) the fluctuation being analyzed must exclusively contain
the desired eigenmode, and (2) the binning scheme must minimize the desired eigenmode cancellations in each bin due to
the simplicity of the AR(1) fitting. Here, the desired eigenmode is the jth mode if kj=k0 is sought after. The first requirement is
met by using the eigenvector of the transposed NP matrix, guaranteeing that the effects of other modes are removed. Opti-
mally, the second requirement can be met by ensuring that each bin boundary is set where the eigenmode changes sign.

Unfortunately, the eigenmode structure for an arbitrary problem cannot be known a priori. Despite this, several observa-
tions can be made so that the cancellations for the first several eigenvalues can be minimized while still using a coarse mesh
that is easy to manipulate and solve. Consider a simple one-dimensional problem. The nth eigenfunction Sn changes sign n
times over the domain. This means that optimally only two tally bins are needed to compute DR ðk1Þ where the boundary
between the two bins is placed at the point where the eigenmode is equal to zero since the corresponding eigenmode only
changes sign once across the domain. Only three tally bins are optimally needed to compute k2=k0ðk2Þ for a one-dimensional
problem, again with the boundaries of the bins placed at the points where the eigenmode is equal to zero. This concept ex-
tends to multi-dimensional problems as well. Only four bins (two per coordinate direction) are needed to compute DR ðk1Þ
for a two-dimensional problem, optimally and eight bins for a three-dimensional problem, optimally.

It is worthwhile to estimate how much cancellation of an eigenfunction can occur before erroneous results are obtained.
The shape of the eigenfunction corresponding to the k1 eigenvalue is available for the flux of Problem 1 from the GFM bench-
mark results and is shown in Fig. 6. It is clear that the eigenfunction changes sign at the middle of the problem. Note that the
source distribution corresponds to the subdomain of 0 6 x 6 1 and 8 6 x 6 9.

To prevent any cancellations from occurring, the bin boundary of a two-bin mesh should be placed in the center. Instead,
an irregular bin scheme was applied. A three-bin mesh is applied over the two fuel regions as shown in Fig. 7. Bins 1 and 3 are
the same size. Bin 2 is varied in size to gauge the amount of cancellation that occurs versus accuracy. In equation form, if
D1;D2;D3 are the widths of bins 1, 2, 3, respectively, then
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D1 ¼ D3

D1 ¼ 1� D2

2
:

Fig. 8 shows the results of this analysis using 40,000 active cycles and 80,000 particles per cycle with 2r error bars.
From this result it appears that when more than 20% of the eigenfunction canceled out over Bin 2 (corresponding to

>0.4 cm for the size of Bin 2), the results became erroneous. At that point, the estimates were outside of a 2r confidence
interval. Especially with higher eigenmodes that have many changes of sign, a fine mesh scheme could be applied to prevent
such a large cancellation of the mode. A stronger fitting (such as ARMA(2,1)) could also be used to improve the estimate, but
the goal of CMPM is to keep the fitting method as simple as possible. CMPM relies on the availability of the full eigenmode for
the simple AR(1) fitting order. As long as there is minimal cancellation of the mode, the method will produce accurate results,
no matter what mesh scheme is applied.

8.4. General results

General results are presented next. In each case, sufficient parameters were used as described in Sections 8.1–8.3. First,
Problem 1 was run using a 30-bin mesh (15 bins across each fuel region) using 40,000 active cycles and 80,000 particles per
cycle. Table 5 compares the 2r confidence interval k1=k0–k4=k0 results of the CMPM to the benchmark GFM results.

As can be seen, the 30-bin mesh is sufficient to accurately compute all four eigenvalue ratios since there is minimal can-
cellation of the eigenmode. It is worth reemphasizing that a 30-bin mesh is not strictly required to accurately compute these
first eigenvalue ratios. A coarser mesh could be used, but since the shape of the corresponding eigenmodes are generally un-
known, a finer 30-bin mesh is used to prevent significant cancellations. Note that GFM used a 1800 bin mesh.



0.995

0.996

0.997

0.998

0.999

1

0 0.5 1 1.5 2
Size of Bin 2, cm

D
R

Fig. 8. DR with 2r standard deviation vs increasing eigenmode cancellation (Problem 1).

Table 5
First four eigenvalue ratios of Problem 1 benchmark vs CMPM with 30-bin mesh and ð2rÞ standard deviation.

GFM using 1800-bin mesh CMPM 2r interval using 30-bin mesh Benchmark contained in 2r?

k1/k0 0.999565 (0.999405,0.999750) Yes
k2/k0 0.304653 (0.292868,0.311932) Yes
k3/k0 0.304635 (0.285621,0.304730) Yes
k4/k0 0.167738 (0.161231,0.180936) Yes

Table 6
DR of Problem 2 benchmark vs CMPM with minimum 4-bin mesh and 2r standard deviation.

Benchmark by discrete ordinates CMPM 2r interval using 4-bin mesh Benchmark contained in 2r?

k1/k0 0.9581 (0.953156,0.959017) Yes

Table 7
First four eigenvalue ratios of Problem 2 benchmark vs CMPM with 36-bin mesh and 2r standard deviation.

FMM using 2304-bin mesh CMPM 2r interval using 36-bin mesh FMM result contained in 2r?

k1/k0 0.95740 (0.954088,0.959891) Yes
k2/k0 0.95710 (0.953242,0.959098) Yes
k3/k0 0.92031 (0.917194,0.924981) Yes
k4/k0 0.89708 (0.894094,0.902874) Yes

Table 8
DR of Problem 3 using MCNP5 benchmark vs CMPM with minimum 4-bin mesh and 2r standard deviation.

Benchmark by ARMA(2,1) HDFM CMPM 2r interval using 4-bin mesh Benchmark contained in 2r?

k1/k0 (0.99092,0.99438) (0.98782,0.99356) Yes
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Next, Problem 2 was run using 40,000 active cycles and 80,000 particles per cycle. Table 6 compares the 2r confidence
interval of k1=k0 results of the CMPM using a 4-bin mesh (two bins per coordinate direction) to the benchmark discrete ordi-
nates results. Table 7 compares the 2r confidence interval k1=k0 � k4=k0 results of the CMPM using a 36-bin mesh to the
FMM results using the discrete ordinates method with a 2304-bin mesh. CMPM was able to accurately compute all of the
first four eigenvalue ratios within the 2r interval. It is interesting to note that since the problem is symmetric along the diag-
onal, it is affected by multiplicity where the first and second non-fundamental eigenvalues (and likewise, the eigenvalue ra-
tios) are theoretically equal. This can often make problems difficult to solve and will be discussed in Section 9.



y = 0.0082Ln(x) + 0.918

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

300 700 1100 1500 1900

D
om

in
an

ce
 R

at
io

CMPM 2-sigma CI w/ 8-Bins
FMM w/ Varying # of Bins

8
Number of Bins

Fig. 10. Problem 4 – 3D PWR comparison FMM vs CMPM.

Fig. 9. Problem 3 – 2D PWR comparison FMM vs CMPM.

8542 B.R. Nease, T. Ueki / Journal of Computational Physics 228 (2009) 8525–8547
Problem 3 is considered next. Table 8 compares the benchmark DR computed by the ARMA(2,1) Half-Domain Fitting
Method (HDFM) [3] against CMPM using 200,000 particles per cycle, 1000 inactive cycles, 9000 active cycles and a 4-bin
mesh. As can be seen, CMPM performs well even for realistic problems.

The final analysis was made using Problems 3 and 4. DR was calculated using basic CMPM mesh (four bins for Problem 3
and eight bins for Problem 4) and contrasted against the FMM using MC and a varying number of bins. This was done to
illustrate the advantage of CMPM over FMM, especially in three-dimensional analysis where thousands of bins may be re-
quired for FMM to calculate the eigenvalues accurately. Problem 3 was run using 5000 particles per cycle, 200 inactive cycles
and 1000 active cycles and is shown in Fig. 9. Problem 4 was run using 20,000 particles per cycle, 200 inactive cycles and
2000 active cycles and is shown in Fig. 10. Trend lines were added to visually show the number of bins in FMM necessary
to reach the lower ends of 2r CI of the CMPM estimate in each case.

As can be seen, FMM needs significantly more bins to accurately estimate DR, especially for Problem 4. The number of
bins necessary for FMM to compute DR within the CMPM 1r and 2r CI is estimated to be 93 and 146, respectively, for Prob-
lem 3 and 2815 and 4169, respectively, for Problem 4 using the trend lines. CMPM requires only four bins for Problem 3 and
eight bins for Problem 4. This is a significant difference that highlights the benefit of CMPM for large three-dimensional anal-
ysis. In passing, ARMA(2,1) HFDM yields 0:990	 0:002ð2rÞ for Problem 4 in Fig. 10.

9. Degenerate eigenvalues

The appearance of multiplicity (repeated or degenerate eigenvalues) can make some problems difficult to solve. Also the
eigenvalues need only be statistically indistinguishable (within the uncertainty of each other) to be considered degenerate.
There are two effects of degeneracy: slower convergence of the second of degenerate eigenvalues and the occasional appear-
ance of complex solutions.



B.R. Nease, T. Ueki / Journal of Computational Physics 228 (2009) 8525–8547 8543
9.1. Degenerate eigenvalue convergence

The second of degenerate eigenvalues often converges extremely slowly. The recommended number of active cycles
gAC ¼max½500; lnð10�3Þ= lnðk1Þ� is often inadequate for the second degenerate eigenvalue. For example, in Problem 2 the
k1=k0 and k2=k0 eigenvalues are theoretically equal due to symmetry. Fifty replicas of this problem were run using the rec-
ommended 500 active cycles and 30,000 particles per cycle. Fig. 11 shows k1=k0 estimates with a 1r interval. The average of
the replicas was 0:9570	 0:0015ð1rÞ, which contains the benchmark value of 0.9581 within 1r and 36 out of 50 replicas
contained the benchmark value within a 1r interval. This analysis does not appear biased. Fig. 12 shows the k2=k0 results.
The k2=k0 average was 0:93096	 0:00222ð1rÞ and 18 out of 50 replicas contained the benchmark value within a 1r interval.
This average value does not contain the benchmark FMM result of 0.95710; it is extremely biased. Other problems that had
degenerate eigenvalues were tested and showed similar results.

Based on Fig. 12, it is clear that the recommended 500 active cycles is not sufficient. This problem was rerun using 5000
active cycles. These results are shown in Fig. 13. The k2=k0 average was 0.95214 ± 0.00048 (1 rÞ and 24 out of 50 replicas
contained the benchmark value within a 1r interval. Though it is closer to the benchmark value, it still does not contain
the benchmark FMM result of 0.95710 even within a 3r range. Therefore, if degeneracy is suspected, it is recommended
to run at least 10,000 active cycles regardless of gAC in order to compute the smaller of the suspected degenerate eigenvalues.

The rate of convergence for these degenerate eigenvalues varied based on the problem. An accurate estimate of the nec-
essary number of active cycles for these particular eigenvalues was not determined, though two comments can be made.
First, since the appearance of degenerate eigenvalues is often caused by material and geometry symmetry, users can often
have a general sense of which eigenvalues may be degenerate. Second, degenerate eigenvalues often appear as complex
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conjugates of NP matrix with the imaginary part much smaller in magnitude than the real part. In this case, if the real or
imaginary part of the corresponding eigenvector is used as a projection vector, the eigenvalue estimates do not suffer from
the prolonged bias and can be used as accurate estimates of the degenerate eigenvalue. This is derived in the next subsection.

9.2. Appearance of complex components due to degeneracy

In this section, an analysis is made of the appearance of complex eigenvalue solutions. There are several immediate obser-
vations that can be made before beginning the analysis. First, it has been proven that the k-eigenvalue solutions of the mono-
energetic transport equation are all real and discrete [4]. The same statement cannot be made for continuous energy prob-
lems, though the authors do not know of any real-world problems where complex eigensolutions have been encountered.
Second, the NP matrix A0is not symmetric, so it cannot be guaranteed that the eigenvalues of A0 are all real. The issue is re-
lated to the apparent appearance of complex components due to statistical fluctuation for degenerate eigenvalues.

The questions that must be investigated are (1) under what conditions complex components are likely to arise, (2) how
frequent complex components occur, (3) what the relative magnitude of the imaginary part is with respect to the real part,
and (4) how to properly account for the appearance of complex solutions. This analysis provides mainly numerical results in
answer to these questions, since analytical derivations cannot be made for the spurious complex output that is due to large
or irregular statistical fluctuation.

The conditions under which complex components could arise were considered first. When only few active cycles were
used 
 O 102

� �� �
, consecutive eigenvalues sometimes appeared as complex conjugates even when their relative magnitude

was only kiþ1=ki > 0:9. When the number of active cycles became larger 
 O 103
� �� �

and the eigenvalues became more dis-
tinguishable, this did not occur. When the consecutive eigenvalues were much closer in magnitude kiþ1=ki > 0:99ð Þ, the fre-
quency of complex components increased.

Table 9 shows the frequency of the k2=k0 and k3=k0 eigenvalue ratios appearing as complex conjugates of each other in 50
replicas of Problem 1 using a 25-bin mesh. Table 10 shows the frequency of the k1=k0 and k2=k0 eigenvalue ratios appearing
as complex conjugates of each other in 50 replicas of Problem 2 using a 4-bin mesh. These tables were both generated using
30,000 particles per cycle. In Problem 2, the k1 and k2 eigenvalues (and likewise the k1=k0 and k2=k0 eigenvalue ratios) are
theoretically exactly equal due to the symmetry in the problem, while in Problem 1, the k2=k0 and k3=k0 are numerically so
close that they can not be statistically indistinguishable. As a quick aside, note that an odd number of source tally bins (25 in
this case) were applied across the fissionable regions for the first case in Table 9, meaning that one bin covered part of the left
and right regions. This is not a concern, however, because as long as there is only minimal cancellation of the associated
eigenmode, any bin scheme can be applied, as was explained earlier. These results suggest that there is a relatively high rate
of occurrence even with thousands of active cycles. Simply running more cycles does not seem to be an optimal way to pre-
vent the incidence of complex components.
Table 9
Frequency of complex k2/k0 and k3/k0 eigenvalues in Problem 1.

Active cycles Frequency of complex (%)

5000 24
8000 14
11,000 20



Table 10
Frequency of complex k1/k0 and k2/k0 eigenvalues in Problem 2.

Active cycles Frequency of complex (%)

300 32
500 24
5000 18

Fig. 14. Ratio of magnitudes of imaginary to real parts of k2/k0 and k1/k0 eigenvalue of A0 in Problems 1 and 2, respectively.
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The magnitude of the imaginary part relative to the real part is also important to consider. Specifically, we wish to quan-
tify an upper bound of the imaginary part and study whether or not the magnitude changes based on the number of active
cycles. It was expected that the largest imaginary parts would occur in problems with the fewest active cycles. Problems 1
and 2 were used again, and this assumption was confirmed. The average magnitudes of the imaginary components were
plotted in a log–log plot in Fig. 14. These magnitudes were contrasted against M�1 and M�1=2 to illustrate how the imaginary
component decreases based on the number of active cycles. As can be seen, the magnitude is bounded and appears to de-
crease no slower than M�1=2. This numerical result suggests that the appearance of complex component is strongly related
to statistics while we have not so far obtained any numerical result indicating that the neglect of non-linear terms in error
propagation would be part of the cause of the appearance of complex component. To clarify the latter aspect, we would need
to develop non-linearity diagnosis which is outside the scope of present work. Instead we present a practical remedy to cope
with the appearance of complex component.

Having quantified the magnitude of the imaginary parts will allow us to select appropriate methods to account for the
appearance of complex eigenvalue ratios. Two such ideas are presented. The first method is to use the real part of the eigen-
vector of A0 as the projection vector and simply ignore the imaginary part. Since A0 is a real matrix, the eigenvalue problem
described in Eq. (78) is rewritten as
AT
0~p ¼ k~p; ð116Þ

AT
0~p
� ¼ k�~p�; ð117Þ
where the conjugate quantities are defined as
~p ¼~pR þ i~pI; ð118Þ
~p� ¼~pR � i~pI; ð119Þ
k ¼ kR þ ikI; ð120Þ
k� ¼ kR � ikI: ð121Þ
R and I signify the real and imaginary parts, respectively. Taking the sum of Eqs. (116) and (117) yields
AT
0 ~pþ~p�ð Þ ¼ k~pþ k�~p�: ð122Þ



Table 11
k2/k0 & k3/k0 of Problem 1 using real & imaginary part of eigenvector in CMPM with 24-bin mesh and 2r standard deviation.

GFM using 1800-bin mesh CMPM 2r CI using real part eigenvector CMPM 2r CI using imaginary part eigenvector

k2/k0, k3/k0 0.304653, 0.304636 (0.293625,0.329863) (0.288569,0.324869)
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The RHS and LHS of the equation can be manipulated individually as
LHS :~pþ~p� ¼ ~pR þ i~pIð Þ þ ~pR � i~pIð Þ ¼ 2~pR; ð123Þ
RHS : k~pþ k�~p� ¼ kR þ ikIð Þ ~pR þ i~pIð Þ þ kR � ikIð Þ ~pR � i~pIð Þ ¼ 2kR~pR � 2kI~pI: ð124Þ
Substituting these into Eq. (122), we obtain
AT
02~pR ¼ 2kR~pR � 2kI~pI: ð125Þ
Assuming that the magnitude of the real eigenvalue component is much larger than the magnitude of the imaginary part, i.e.,
kIj j � kRj j, then the RHS of Eq. (125) can be approximated as
AT
0~pR ¼ kR~pR � kI~pI � kR~pR: ð126Þ
Thus, the eigenvalue problem remains the same even if only the real part of the eigenvector is used. This proof is based on the
assumption that the magnitude of the imaginary part of the eigenvalue is much less than the real part. Since the magnitude
was found to be bounded by the number of active cycles in Fig. 14, this assumption appears to be valid. This was the method
used in this research. All results presented use only the real part of the eigenvector of AT

0 as the projection vector. However,
the imaginary part can also be used since [16]
AT
02i~pI ¼ AT

0 ~p�~p�ð Þ ¼ k~p� k�~p� ¼ 2ikR~pI þ 2ikI~pR � 2ikR~pI: ð127Þ
Table 11 shows k2=k0 and k3=k0 of Problem 1 using 15,000 active cycles and 30,000 particles per cycle, which correspond to
these values of Table 5 obtained by different computational conditions. One can see that the use of the real and imaginary
part of NP matrix eigenvector in CMPM yield statistically indistinguishable values for the corresponding GFM benchmark
values. More details on these complex component issues were reported in a recent conference [16].

The second method to account for the imaginary components is to perform the autoregressive fitting to a complex time
series. This would be a desirable method if the magnitude of the imaginary component was not negligible or if it were be-
lieved that the eigenvalue was, in fact, complex in nature. Allowing for complex valued processes is not difficult, though it
does require some changes to the definitions of the autocovariance functions [17]. Since the authors do not know of any real-
world problems that have complex eigensolutions and we did not encounter problems where kIj j was not negligible com-
pared to kRj j, the theory will not be presented here.

10. Summary and comments

A novel method of computing the k-eigenvalues of the neutron transport equation in Monte Carlo calculations was pre-
sented. The method is termed Coarse Mesh Projection Method and transforms the multi-dimensional MC source distribution
to a form amenable to one dimensional time series techniques, enabling the eigenvalue ratios to be extracted statistically
and thus eliminating the same discretization error effect as deterministic methods. The application of time series techniques
allows for the largest non-fundamental eigenvalues to be calculated using very coarse mesh schemes (as few as two bins per
coordinate direction) making the calculations extremely fast and efficient. It also enables one to compute the standard devi-
ation of these eigenvalues from a single run (replica) of Monte Carlo calculation. To accurately calculate the eigenvalues,
however, certain conditions must be met. First, there must be minimal-to-no cancellation of the sought-after eigenmode
over the source distribution tally bins. The effect of other eigenmodes must also be removed, but this occurs automatically
in CMPM by using the eigenvector of the transpose of the noise propagation (NP) matrix. Second, we impose that the min-
imum number of active cycles equal to gAC ¼ max 500; lnð10�3Þ= ln k1ð Þ

h i
must be used to ensure unbiased results. In cases

where the eigenvalues are very close in magnitude kiþ1=ki > 0:99ð Þ, more cycles, typically at least 10,000 cycles, are neces-
sary to calculate the smaller of degenerate eigenvalues kiþ1 accurately. Complex conjugate eigenvalues of the NP matrix can
arise in these cases for about the likelihood of 20%. We have shown that if the imaginary part of the complex eigenvalue of
noise propagation matrix is much smaller in magnitude than the real part, the real or imaginary part of the eigenvector can
safely be used. It can be concluded that CMPM correctly computes the eigenvalues as far as the true eigenvalues of sought-
after eigenmodes are real.

A three space-dimensional pressurized water reactor problem was analyzed. It was demonstrated that the computation of
largest non-fundamental mode eigenvalue with CMPM needed only eight bins while the same computation with fission ma-
trix method (FMM) needed at least several thousand bins. The author’s opinion on this huge performance difference is as
follows. FMM approximates infinite dimensional discrete eigenvalue spectrum by finite dimension. CMPM seeks to make
not-sought-after eigenmodes cancel out. This difference in approach will be the cause of great performance gain of CMPM
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over FMM for large three space-dimensional problems and CMPM is to be regarded the so-called feature extraction approach
in signal processing. The feature extraction aspect was addressed in a recent conference by demonstrating that higher order
autoregressive fitting improved eigenvalue estimation without increasing the number of bins [16]. Therefore, the present
work is new and original in demonstrating that a methodology of feature extraction nature can be a valuable and efficient
tool in nuclear criticality eigenvalue problems.

There are many further areas of study that could be explored with regard to this method. Among them, a stronger require-
ment for the necessary number of active cycles should be investigated since the correlation distance between cycles does not
always provide an accurate gauge, especially when there is multiplicity or degenerate eigenvalues.
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